59th Annual Meeting of the American Association for the Study of Liver Diseases October 31 - November 4, 2008 San Francisco, California, USA

Tenofovir is Equally Active *In Vitro* Against Wild-type HBV Clinical Isolates of Genotypes A-H

M Curtis¹, J Hinkle¹, J Harris¹, K Borroto-Esoda¹ and Y Zhu¹

¹Gilead Sciences, Inc., Durham, NC, USA

GILEAD Gilead Sciences, Inc. 333 Lakeside Drive Foster City, CA 94404 Tel: (650)574-3000 Fax: (650)578-9264

Introduction

- Tenofovir is an acyclic nucleotide analog whose oral prodrug tenofovir disoproxil fumarate (TDF) was recently approved for the treatment of chronic hepatitis B (CHB)
- HBV is classified into eight different viral genotypes (A-H)
- Differences among the viral genotypes could affect susceptibility to antiviral agents

Objective

• To evaluate the *in vitro* tenofovir susceptibility of patient derived wild-type HBV representing viral genotypes A-H

Methods

- Subjects and sera: Baseline samples from treatment naïve, CHB patients enrolled in various Gilead sponsored clinical trials
- Extraction and amplification: HBV DNA was extracted and the full-length HBV genome was amplified as described by Gunther, et al¹
- Cloning of full-length quasi-species pools: The full-length HBV genomes were cloned into the pHY106 plasmid vector²
- Drug susceptibility testing: HBV quasi-species pools were transfected into HepG2 cells in 6-well plates. A day later drug treatment started and lasted for 7 days, with replacement of fresh drug-containing media every 2-3 days. Intra-cellular core-associated HBV DNA was extracted and analyzed by Southern hybridization using ³²P-labelled HBV DNA as a probe. Tenofovir EC₅₀ values were calculated based on the signal intensities of ds-HBV DNA using TableCurve 2D software (SYSTAT)
- Statistical analysis: Mixed effect ANOVA models were fit to log-transformed EC₅₀ and HBV DNA data across patients and lab strain samples with a fixed effect for genotype and a random effect for sample-within-genotype

Figure 1. HBV DNA replication of the full length wild-type HBV genomes representing viral genotypes A-H decreased in the presence of tenofovir

Figure 2. Levels of Intracellular Replicating HBV DNA Were Similar Across Genotypes A-H, Except for Genotype D*

Results

able 1. HBV Viral Genotypes A-H Were Equally Susceptible to Inhibition by Tenofovir

Sample ID	Viral Genotype	Replicates (n=)	Tenofovir EC ₅₀ (uM) +/- STDEV
pHY92	А	11	0.7± 0.3
1	А	3	0.8 ± 0.2
2	В	3	0.4 ± 0.1
3	С	3	0.4 ± 0.3
4	С	3	0.7 ± 0.1
5	С	3	0.5 ± 0.1
6	D	3	0.3 ± 0.1
7	D	3	0.6 ± 0.1
8	Е	3	0.3 ± 0.1
9	F	3	0.2 ± 0.1
10	G	3	0.9 ± 0.2
11	Н	3	0.3 ± 0.2

Statistical analysis (mixed ANOVA) comparing tenofovir EC₅₀ values across genotypes A-H, p=0.30

Conclusions

- Tenofovir was equally active in vitro against wild-type HBV clinical isolates representing viral genotypes A-H
- These results are consistent with observations from clinical studies which demonstrated similar virologic response across viral genotypes in patients treated with TDF³

References

- 1. Gunther,S et al, A Novel Method for Efficient Amplification of Whole Hepatitis B Virus Genomes Permits Rapid Functional Analysis and Reveals Deletion Mutants in Immunosuppressed Patients, Journal of Virology, Sept. 1995, p. 5437–5444, Vol. 69, No. 9
- 2. Zhu,Y et al, In Vitro Drug Susceptibility Analysis of Hepatitis B Virus Clinical Quasispecies Populations. Journal of Clinical Microbiology, Oct. 2007, p. 3335-3341, vol. 45, No. 10
- 3. Gane, E. et al, Lack Of Influence Of Baseline Genotype On Antiviral Response In Subjects With Chronic Hepatitis B Infection Receiving Tenofovir DF 300 MG QD For 1 Year. Poster No. 2780, 43rd Annual EASL, April 23-27, 2008 Milan, Italy