

Shionogi-GlaxoSmithKline Pharmaceuticals, LLC

Ivy Song¹, Shuguang Chen¹, Yu Lou¹, Julie Borland¹, Tamio Fujiwara², Stephen Piscitelli¹, Sherene Min¹.

¹GlaxoSmithKline, RTP, NC, USA; ²Shionogi & Co., Ltd., Osaka, Japan

Abstract

Background: S/GSK1349572 is a novel HIV integrase strand transfer inhibitor that demonstrated PK supporting once daily dosing and good tolerability in healthy subjects. A dose ranging, placebo-controlled 10-day monotherapy study showed unprecedented antiviral activity of S/GSK1349572 in HIV-1 infected subjects.

Infected subjects.

Methods: 35 subjects were randomized to doses of 2mg, 10mg, 50mg, or placebo once daily for 10 days. Serial HIV-1 RNA and PK samples were collected during the study. S/GSK1349572 concentrations were analyzed using a validated LC/MS/MS assay. PK parameters were calculated by noncompartmental methods. Relationship between PK (AUCr, Cmax, and Cr) and PD measures (changes in HIV-1 RNA) was assessed using various Emax and linear models. Model selection was based on Akaike Information Criteria value and F-test.

<u>Results</u>: Day10 PK parameters, geometric mean (CV%), and mean change of HIV-1 RNA from baseline to Day 11 are presented.

	ΑUCτ μg*h/mL	Cmax µg/mL	Ст µg/mL	IQ	ΔLog ₁₀ HIV-1 RNA
2mg QD (n=9)	2.56 (29%)	0.22 (25%)	0.04 (50%)	0.6	-1.51
10mg QD (n=7)	10.1 (20%)	0.80 (23%)	0.19 (25%)	3	-2.03*
50mg QD (n=10)	43.4 (20%)	3.34 (16%)	0.83 (26%)	13	-2.46

S/GSK1349572 demonstrated low variability and time-invariant PK; steady state was achieved by 7 days of dosing, consistent with the known half-life (-14hours). Greater antiviral activity was associated with higher S/GSK1349572 plasma exposure. Cr was the PK parameter that best predicted antiviral activity. The relationship between Cr and reduction in log₁₀ plasma HIV-1 RNA from baseline to Day 11 was best described by a simple Emax model with Emax = -2.6log₁₀ and EC50 = 0.036 μg/mL (p<0.0001).

Conclusions: S/GSK1349572 demonstrated low PK variability and a clear, predictable, and well characterized exposure-activity relationship, with anti efficacy primarily driven by Ct. These attributes distinguish S/GSK1349572 from raltegravir.

Introduction

- The long-standing Shionogi-GSK Joint Venture has made considerable progress in developing next-generation integrase inhibitors.
- S/GSK1349572 is the only once-daily, unboosted integrase inhibitor currently in development with unprecedented antiviral activity and a superior resistance profile. 1,2,3
- To date, the PK-PD relationship for INI has not been well characterized. There has been a lack of PK-PD relationship demonstrated for raltegravir (RAL); this can largely be attributed to high RAL PK variability.^{4,5} Elvitegravir (ELV), another INI currently in Phase III clinical development has demonstrated exposure-dependent antiviral activity.
- S/GSK1349572 demonstrated low PK variability which provides a good foundation for understanding the PK-PD relationship of this drug, and can also be applied to better understanding the class.⁷
- A dose ranging, placebo-controlled 10-day monotherapy study of S/GSK1349572 in HIV-1 infected subjects showed a mean 2.5 log decrease from baseline in plasma HIV RNA with the 50mg dose, and a clear dose-response relationship.1
- The design and dose selection of this study provided data to better understand the PK-PD relationship of this compound and provide inference across all INIs.

Methods

- 35 subjects were randomized to doses of 2mg, 10mg, 50mg, or placebo once daily (QD) for 10 days.
- Serial HIV-1 RNA and PK samples were collected during the study. S/GSK1349572 concentrations were analyzed using a validated LC/MS/MS assay.
- S/GSK1349572 PK parameters were calculated by noncompartmental methods. Relationship between PK and PD measures (changes in HIV-1 RNA) was assessed using various Emax and linear models. Model selection was based on Akaike Information Criteria value and F-test.
- PK measures: AUCτ, Cmax, and C τ on Day 10
 - PD measures: reduction in log₁₀ plasma HIV-1 RNA on Day 11 from baseline (pre-dose on Day1), reduction in log₁₀ plasma HIV-1 RNA from baseline to the on treatment nadir.

 - Log-linear mouels: $PD = \frac{E \max^* PK}{EPK50^\gamma + PK^\gamma}$

where PK measure is either original or log-transformed; Emax was either estimated or fixed to 2.6, 2.7, or 2.8 to help model converge. γ was either estimated or fixed to 1.

Results

Figure 1. Mean (±SD) S/GSK1349572 Concentrationtime Profiles by Dose

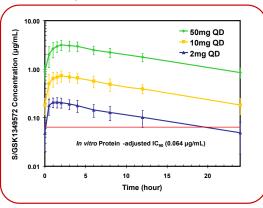


Table 1. Summary of S/GSK1349572 PK Parameters and Mean HIV-1 RNA Reduction from Baseline by Dose

	AUCτ μg*h/mL	Cmax µg/mL	Ст µg/mL	IQ	ΔLog ₁₀ HIV-1 RNA
2mg QD (n=9)	2.56 (29%)	0.22 (25%)	0.04 (50%)	0.6	-1.51
10mg QD (n=7)	10.1 (20%)	0.80 (23%)	0.19 (25%)	3	-2.03*
50mg QD (n=10)	43.4 (20%)	3.34 (16%)	0.83 (26%)	13	-2.46

Geometric mean (CV%); IQ=C_T/PA-IC₉₀, PA-IC₉₀=0.064 μ g/mL; *n=

- Time-invariate PK and steady state is achieved by 7 days
- PK supports once daily dosing without boosting
- Robust antiviral responses achieved with low mg doses
- Very low inter- and intra-subject variability provides foundation for understanding PK/PD relationship and is key in defining therapeutic target

Figure 2. Exposure-Response Relationship of S/GSK1349572

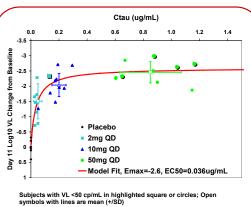
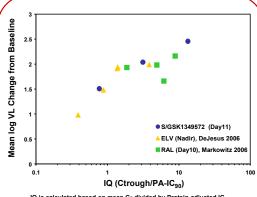



Table 2. AIC Values of Selected Models of Relationship between S/GSK1349572 PK Parameters and Day 11 HIV-1 RNA Reduction from Baseline

Model	AUCτ	Cmax	Сτ
$PD = \frac{E \max^* PK}{EPK50 + PK}$	34.6	37.3	32.0
$PD = \frac{E \max^* PK^{\gamma}}{EPK50^{\gamma} + PK^{\gamma}}$	36.3	39.0	33.0
$PD = \frac{E \max * \log_{10}(PK)}{EPK50 + \log_{10}(PK)}$	50.4	49.4	45.9
$D = \frac{E \max^* (\log_{10}(PK))^{\gamma}}{EPK50^{\gamma} + (\log_{10}(PK))^{\gamma}}$	36.6	39.2	33.7
PD = a + b*log10(PK)	39.7	42.1	37.5
nax is fixed to 2.6.			

- The relationship between S/GSK1349572 exposure and reduction in \log_{10} HIV-1 RNA on Day 11 can be best described by an Emax model with PK measures on the original scale, Emax fixed to 2.6 $\mbox{log}_{10},$ and γ fixed to 1.
- C_{τ} (concentration at end of dosing interval) was the PK parameter that best predicted Day 11 plasma viral load reduction from baseline or maximum plasma viral load reduction from baseline.
- It should be noted that this study was not designed to differentiate these PK predictors as all doses were given QD and all PK parameters are correlated.

Figure 3. PK-PD Relationship of S/GSK1349572 RAL, and ELV in 10-day Monotherapy (Pooled Data)

IQ is calculated based on mean C_τ divided by Protein-adjusted IC $_{90}$ (PA-IC $_{90}$). Mean C_τ values for RAL and ELV are from published data. PA-IC₃₉ were determined based on vitro data using the same assay and viral strand for S/GSK1349572 (152nM), RAL(23nM), and ELV (78nM). RAL. 100, 200, 400, and 600mg BID; plasma HIV RNA LLQ of 400c/mL, BQL treated as 200c/mL. ELV: 800mg QD, 200, 400, 800mg BID, 50mg/r QD

Discussions

- The pooled data from S/GSK1349572 and ELV in 10-day monotherapy shows a PK-PD relationship for the integrase inhibitors as a group, in that higher exposure drives higher antiviral activity.
- IQ (calculated by Cτ/PA-IC₉₀) is a good predictor of antiviral activity (in short-term monotherapy) for S/GSK1349572.
- S/GSK1349572 50mg QD demonstrated unprecedented antiviral activity, attributable to superior IQ achieved.
- RAL failed to show PK-PD relationship in 10-day monotherapy due to the narrow dose range studied and unpredictable PK
- In contrast, the Phase 2a study of S/GSK1349572 studied a wide dose range, allowing in-depth understanding of the PK-PD relationship.
- 'D relationship observed for empowers integrated drug-disease modeling and dose selection in currently on-going Phase 2B clinical trials across different patient populations and the confidence in chronic dosing of S/GSK1349572 in HIV-infected patients.

Conclusions

- S/GSK1349572 demonstrated low PK variability and a clear, predictable, and well characterized exposure-response relationship.
- Antiviral activity for INIs is exposure driven.
- S/GSK1349572 achieved greater antiviral activity than RAL and ELV after 10-day monotherapy.
- The PK parameter that best predicts S/GSK1349572 efficacy is $C\tau$; therefore achieving a high IQ will lead to successful clinical outcomes.

Acknowledgements

Shionogi/GlaxoSmithKline thank the study participants and the investigators for their participation and contributions to this study.

- References
- 1. Lalezari J. et al. IAS 2009, Cape Town, Oral #TUAB105. 2. Sato A. et al. IAS 2009, Cape Town, Poster #WEPEA097
- 3. Underwood M. et al. IAS 2009. Cape Town, Poster #WEPEA098.
- 4. Markowitz M. et al. 2006. JAIDS. 43(5): 509-515.
- 5. Wenning LA. et al. 2008. 9th Int Workshop on Clin Pharm of HIV Therapy. 6. DeJesus E. et al. 2006. JAIDS. 43(1): 1-5.
- 7. Min, S. et al. IAS 2009, Cape Town, Poster #WEPEA099.