Poster #905

Baseline, Donor, and On-treatment Predictors of Sustained Virologic Response in Patients Treated for Recurrent Hepatitis C Following Orthotopic Liver Transplant: Subanalysis of the PROTECT Study

F. D. Gordon, F. Poordad, G. Neff, S. Mukherjee, G. Barnard, D. Barnes, A. Koch, P. Hayashi, M. R. Lucey, L. Kulik, A. D. Smith, M. S. Olyaee, P. Mantry, E. Chaudhri, L. D. Pedicone L. Kulik, D. Smith, L. Chaudhri, L. D. Pedicone L. Kulik, D. Smith, D. Smith, L. Chaudhri, L. D. Pedicone L. Kulik, D. Smith, D. Smith

¹Lahey Clinic Medical Center, Burlington, MA, USA; ²Cedars-Sinai Medical Center, Los Angeles, CA, USA; ³University of Nebraska Medical Center, Omaha, NE, USA; ⁵University of Massachusetts, Worcester, MA, USA; ⁴Cleveland Clinic, Cleveland, OH, USA; ¹³The Liver Institute at Methodist Dallas Medical Center, Dallas, TX, USA; ¹⁴Schering-Plough Research Institute, now Merck & Co., Inc., Whitehouse Station, NJ, USA

Abstract

Aim: To identify baseline, donor, and on-treatment predictors of sustained virologic response (SVR) in patients (pts) receiving therapy for recurrent hepatitis C following orthotopic liver transplant (OLT).

Methods: Phase 3, single-arm, multicenter, open-label study. Adult pts with recurrent hepatitis C infection post-OLT received peginterferon (PEG-IFN) alfa-2b (1.5 µg/kg/wk) plus ribavirin (RBV, 400-1200 mg/day) for up to 48 weeks; then were followed for an additional 24 weeks. Primary end point was SVR (LLQ <25 IU/mL). This subanalysis examined baseline, donor, and on-treatment factors affecting SVR.

Results: 125 pts were enrolled at 24 US centers. Overall SVR was 28.8%. 80/80/80 adherent pts (80% of the assigned PEG-IFN dose, 80% of assigned RBV dose, and 80% of assigned treatment duration) were more likely to attain SVR than pts unable to maintain adequate dosing (odds ratio [OR] = 9.9, 95% confidence interval [CI] 4.1, 23.9, P < .001). Pts attaining complete EVR (undetectable HCV RNA at week 12) were more likely to attain SVR than those failing to attain EVR (OR = 110.0, 95% CI 16.4, 700.7; P < .001). The likelihood of SVR was also significantly higher in pts with partial EVR (≥2 log₁₀ decline yet detectable HCV RNA at week 12) compared with those with no EVR (OR = 31.1, 95% CI = 4.8, 195.3, P < .001).

Conclusion: Dosing of at least 80/80/80, pEVR, and cEVR are significant positive predictors of SVR in pts receiving PEG-IFN alfa-2b plus RBV for recurrent hepatitis C post-OLT. Discontinuation of treatment may be considered in pts who fail to attain EVR.

Note: This abstract has been modified since submission.

Background

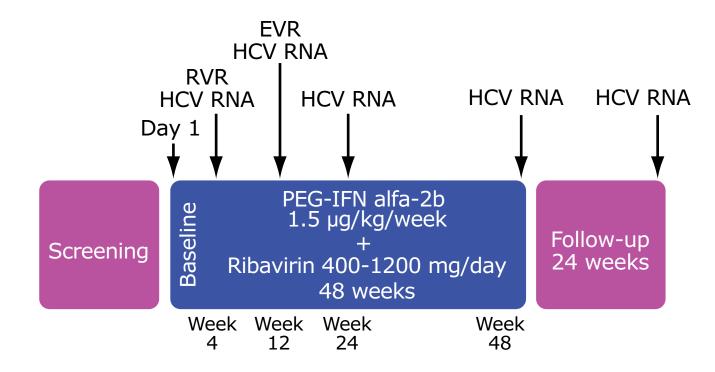
- Reinfection of liver allografts in hepatitis C virus (HCV)-infected transplant recipients begins immediately after transplantation in almost all patients¹⁻²
- Cirrhosis develops within 5 years in 10% to 30% of these patients, and the probability of decompensation within 12 months is 42% once cirrhosis is established³
- In the PROTECT study, sustained virologic response (SVR) was attained by 28.8% of post-orthotopic liver transplant (OLT) patients receiving peginterferon (PEG-IFN) alfa-2b plus ribavirin for 48 weeks⁴

Aim

• To identify baseline, donor, and on-treatment predictors of SVR in patients receiving therapy for recurrent hepatitis C following OLT

Patients and Methods

Patients


- Adult patients with a diagnosis of recurrent hepatitis C (any genotype) who had received a primary OLT from either a deceased or live donor
- All patients had end-stage hepatitis C prior to transplantation and had persistent HCV viremia after OLT
- Liver transplants were performed ≥3 months, but ≤3 years prior to screening
- Patients were required to have been receiving stable doses of immunosuppressive therapy for at least 1 month

- All patients had compensated liver disease with hemoglobin \geq 11 g/dL; neutrophil count \geq 1000/mm³; platelets \geq 60,000/mm³; direct, indirect, and total bilirubin ≤3 times the upper limit of normal; albumin ≥3.0 mg/dL; creatinine clearance >50 mL/min; and alpha-fetoprotein ≤250 ng/mL
- Patients with evidence of decompensated liver disease; coinfection with hepatitis B virus and/or human immunodeficiency virus; body weight >135 kg; or any cause of liver disease other than chronic hepatitis C were excluded
- Patients were not required to show any degree of fibrosis

Study Design

- This was a phase 3, single-arm, multicenter, open-label study
- All patients received PEG-IFN alfa-2b (1.5 μg/kg/week) plus ribavirin (400-1200 mg/day) for 48 weeks (**Figure 1**)
- All patients received ribavirin 400 mg/day during weeks 1 and 2 and 800 mg/day during weeks 3 and 4
- Thereafter, among patients who tolerated treatment, ribavirin was administered according to body weight
- Immunosuppressive therapy was administered according to the protocols at each center
- Growth factors were permitted at the discretion of the treating physician
- Primary end point was SVR, defined as undetectable HCV RNA 24 weeks after completing treatment (lower limit of quantitation <25 IU/mL)
- Relapse was defined as detectable HCV RNA during 24-week follow-up in patients with undetectable HCV RNA at the end of treatment

Figure 1. PROTECT study design.

Treatment week 1–2: RBV 400 mg/day

Treatment week 3–4: RBV 800 mg/day

Treatment week 5-48: RBV dose increased to max of

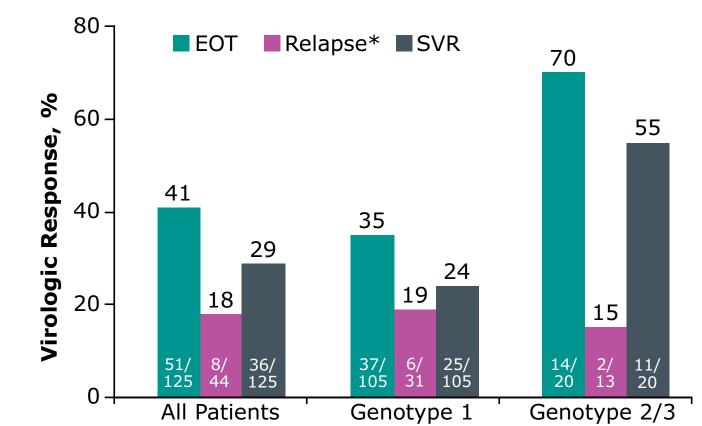
1200 mg/day (weight-based) if well tolerated

EVR = early virologic response; HCV = hepatitis C virus; PEG-IFN = peginterferon; RBV = ribavirin; RVR = rapid virologic response.

Results

Patients

- Most patients were white and male (Table 1)
- Tacrolimus and mycophenolate were the most frequently used immunosuppressive agents


Table 1. Patient Characteristics

	All Patients (N = 125)	Genotype 1 (n = 105)	Genotype 2/3 (n = 20)
Male, n (%)	106 (85)	92 (88)	14 (70)
Race, n (%)			
White	101 (81)	82 (78)	19 (95)
Black	14 (11)	14 (13)	0
Age, mean, y	54.2	54.5	52.2
Weight, mean, kg	86.5	86.0	89.2
Baseline viral load >600,000 IU/mL, n (%)	111 (89)	95 (90)	16 (80)
Donor age, mean, y	40.4	39.4	45.2
Donor deceased, n (%)	108 (86)	90 (86)	18 (90)
Transplant-treatment interval, mean ± SD, days	477.6 ± 240	467.0 ± 235	533.7 ± 266
Primary immunosuppressive therapy, n (%)			
Tacrolimus	104 (83)	87 (83)	17 (85)
Cyclosporine	18 (14)	16 (15)	2 (10)
Sirolimus	9 (7)	8 (8)	1 (5)
Mycophenolate	70 (56)	60 (57)	10 (50)
Prednisone	16 (13)	15 (14)	1 (5)
Methylprednisolone	2 (2)	1 (1)	1 (5)
Antithymocyte immunoglobulin	1 (1)	1 (1)	0

Virologic Response

- In total, 29% of patients attained SVR (**Figure 2**)
- 52 of 125 (41.6%) patients discontinued treatment early
- Reasons for discontinuation were adverse events (n = 38), treatment failure (n = 7), did not wish to continue (n = 5), noncompliant (n = 2)

Figure 2. Virologic response rates in the PROTECT study.

*Relapse rate calculation includes patients with undetectable HCV RNA at EOT who were not missing follow-up visit data. EOT = end of treatment; SVR = sustained virologic response.

- Predictors of SVR:
- 80/80/80-adherent patients were more likely to attain SVR than patients unable to maintain adequate dosing (odds ratio [OR] 9.9, 95% confidence interval [CI] 4.1-23.9, P < .001) (**Table 2**)
- Early virologic response (EVR) was a significant predictor of SVR
- Patients attaining complete EVR (undetectable HCV RNA at week 12) were more likely to attain SVR than those failing to attain EVR (OR 110.0, 95% CI 16.4-700.7, P < .001)
- Patients attaining partial EVR (≥2-log₁₀ decline yet detectable HCV RNA at week 12) were also significantly more likely to attain SVR than those with no EVR (OR 31.1, 95% CI 4.8-195.3, P < .001)

Table 2. SVR in Patient Subgroups

Variables, % (n/N)	All Patients (N = 125)	Genotype 1 (n = 105)	Genoty 2/3 (n = 20
Patient			
Genotype	28.8 (36/125)	23.8 (25/105)	55.0 (11/
Gender Male Female	33.0 (35/106) 5.3 (1/19)	27.2 (25/92) 0 (0/13)	71.4 (10/ 16.7 (1/6
Race White Non-White	29.7 (30/101) 25.0 (6/24)	24.4 (20/82) 21.7 (5/23)	52.6 (10/ 100 (1/1
Age, y <50 ≥50	42.3 (11/26) 25.3 (25/99)	31.6 (6/19) 22.1 (19/86)	71.4 (5/7) 46.2 (6/1)
Bodyweight, kg <75 ≥75	19.2 (5/26) 31.3 (31/99)	22.7 (5/22) 24.1 (20/83)	0 (0/4 68.8 (11/
Baseline viral load, IU/mL ≤600,000 >600,000	46.2 (6/13) 27.0 (30/111)	44.4 (4/9) 22.1 (21/95)	50.0 (2/4 56.3 (9/1
Baseline hemoglobin, g/dL ≤14 >14	13.6 (9/66) 45.8 (27/59)	10.3 (6/58) 40.4 (19/47)	37.5 (3/8 66.7 (8/1
Baseline serum glucose, mmol/L <5.6 ≥5.6	31.1 (19/61) 26.6 (17/64)	26.9 (14/52) 20.8 (11/53)	55.6 (5/9 54.5 (6/1
Donor			
Status Deceased Living	32.4 (35/108) 11.1 (1/9)	27.8 (25/90) 0 (0/8)	55.6 (10/ 100 (1/1
Donor age, y ≤50 >50	32.9 (26/79) 25.8 (8/31)	30.4 (21/69) 13.0 (3/23)	50.0 (5/1 62.5 (5/8
On-treatment			
RVR Yes No	83.3 (5/6) 25.7 (29/113)	100 (3/3) 20.8 (20/96)	66.7 (2/3 52.9 (9/1
EVR ^a cEVR pEVR No EVR	66.7 (22/33) 36.1 (13/36) 1.8 (1/56)	60.0 (12/20) 37.5 (12/32) 1.9 (1/53)	76.9 (10/ 25.0 (1/4 0 (0/3
Nadir hemoglobin, g/dL <10 ≥10	26.4 (23/87) 34.2 (13/38)	23.0 (17/74) 25.8 (8/31)	46.2 (6/1 71.4 (5/7
Cyclosporine use ^b Yes No	29.4 (5/17) 28.7 (31/108)	33.3 (5/15) 22.2 (20/90)	0 (0/2 61.1 (11/
Tacrolimus use ^b Yes No	30.4 (31/102) 21.7 (5/23)	23.5 (20/85) 25.0 (5/20)	64.7 (11/ 0 (0/3
80:80:80 compliant ^a Yes No	61.5 (24/39) 14.0 (12/86)	57.1 (16/28) 11.7 (9/77)	72.7 (8/1 33.3 (3/9

vs no EVR; 80:80:80 vs no 80:80:80; P < .001 for all comparisons). All other variables failed to show a significant association with SVR (P > .05). Analysis was performed only for the "all-patient" population.

^bUse of immunosuppressive agent during screening and/or treatment.

cEVR = complete early virologic response; EVR = early virologic response; pEVR = partial early virologic response; RVR = rapid virologic response.

Conclusions

- Dosing of at least 80/80/80 and partial and complete EVR are significant positive predictors of SVR in patients receiving PEG-IFN alfa-2b plus ribavirin for recurrent hepatitis C post-OLT
- Discontinuation of treatment may be considered in patients who fail to attain EVR

Acknowledgments

Study investigators: Graham Barnard, David Barnes, Kim Brown, Robert Brown, Jeffrey Crippin, Reem Ghalib, Fred Gordon, Paul Hayashi, Alvaro Koch, Laura Kulik, Paul Kwo, Michael Lucey, Parvez Mantry, Sandeep Mukherjee, Guy Neff, Mojtaba Olyaee, Fred Poordad, Nikolaos Pyrsopolous, Thomas Schiano, Alastair Smith, Lewis Teperman, Hugo Vargas.

References

- .. Ballardini G, et al. *Liver Transpl*. 2002;8(1):10-20.
- Guerrero RB, et al. Mod Pathol. 2000;13(3):229-37. Berenquer M. Liver Transpl. 2002;8(10):S14-8.
- 4. Gordon FD, et al. Presented at the 45th Annual Meeting of the European Association for the Study of the Liver; April 14–18, 2010; Vienna, Austria.

Disclosures

F. Poordad has been an advisor/consultant and has received research grants from Abbott, Genentech, Gilead, Idenix, Merck, Salix, and Vertex and has also received research grants from Bristol-Myers Squibb and Pharmassett plus speaker honoraria from Genentech, Gilead, and Salix. G. Neff has served on speaker bureaus for Bayer, Bristol-Myers Squibb, Genentech, Salix, and 3-Rivers and as consultant to Genentech and Salix. S. Mukherjee is on the speaker bureau for Merck. D. Barnes is an investigator for Centocor, Eisai, Hyperion Therapeutics, Hoffman-LaRoche, Ikaria, and Merck. M. R. Lucey receives grant support from Bristol-Myers Squibb, Hyperion, Salix, and Vertex. F. D. Gordon, G. Barnard, A. Koch, P. Hayashi, L. Kulik, A. D. Smith, and M. S. Olyaee have nothing to disclose. E. Chaudhri and L. D. Pedicone are employees of, and hold stock in Schering-Plough, now Merck and Co.

Poster #905

Baseline, Donor, and Recurrent Hepatiti

F. D. Gordon, 1 F. Poordad, 2 G. Neff, 3 S. Mu

¹Lahey Clinic Medical Center, Burlington, MA, USA; ²Cedars-Sinai Med ⁷University of Kentucky, Lexington, KY, USA; ⁸University of No.

Abstract

Aim: To identify baseline, donor, and on-treatment predictors of sustained virologic response (SVR) in patients (pts) receiving therapy for recurrent hepatitis C following orthotopic liver transplant (OLT).

Methods: Phase 3, single-arm, multicenter, open-label study. Adult pts with recurrent hepatitis C infection post-OLT received peginterferon (PEG-IFN) alfa-2b (1.5 μ g/kg/wk) plus ribavirin (RBV, 400-1200 mg/day) for up to 48 weeks; then were followed for an additional 24 weeks. Primary end point was SVR (LLQ <25 IU/mL). This subanalysis examined baseline, donor, and on-treatment factors affecting SVR.

Results: 125 pts were enrolled at 24 US centers. Overall SVR was 28.8%. 80/80/80 adherent pts (80% of the assigned PEG-IFN dose, 80% of assigned RBV dose, and 80% of assigned treatment duration) were more likely to attain SVR than pts unable to maintain adequate dosing (odds ratio [OR] = 9.9, 95% confidence interval [CI] 4.1, 23.9, P < .001). Pts attaining complete EVR (undetectable HCV RNA at week 12) were more likely to attain SVR than those failing to attain EVR (OR = 110.0, 95% CI 16.4, 700.7; P < .001). The likelihood of SVR was also significantly higher in pts with partial EVR ($\ge 2 \log_{10}$ decline yet detectable HCV RNA at week 12) compared with those with no EVR (OR = 31.1, 95% CI = 4.8, 195.3, P < .001).

Conclusion: Dosing of at least 80/80/80, pEVR, and cEVR are significant positive predictors of SVR in pts receiving PEG-IFN alfa-2b plus RBV for recurrent hepatitis C post-OLT. Discontinuation of treatment may be considered in pts who fail to attain EVR.

Note: This abstract has been modified since submission.

Background

- Reinfection of liver allografts in hepatitis C virus (HCV)-infected transplant recipients begins immediately after transplantation in almost all patients¹⁻²
 - Cirrhosis develops within 5 years in 10% to 30% of these patients, and the probability of decompensation within 12 months is 42% once cirrhosis is established³
- In the PROTECT study, sustained virologic response (SVR) was attained by 28.8% of post-orthotopic liver transplant (OLT) patients receiving peginterferon (PEG-IFN) alfa-2b plus ribavirin for 48 weeks⁴

Aim

 To identify baseline, donor, and on-treatment predictors of SVR in patients receiving therapy for recurrent hepatitis C following OLT

Patients and Methods

Patients

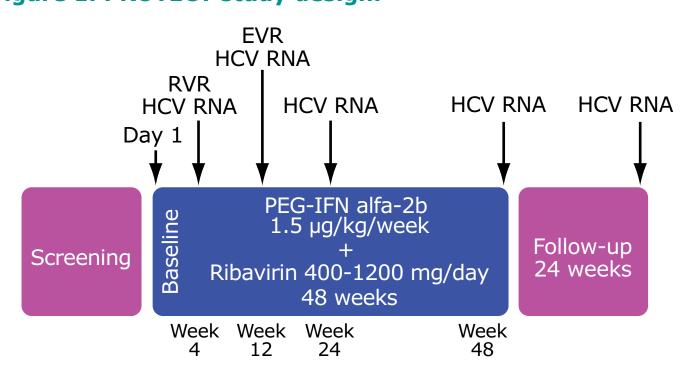
- Adult patients with a diagnosis of recurrent hepatitis C (any genotype) who had received a primary OLT from either a deceased or live donor
 - All patients had end-stage hepatitis C prior to transplantation and had persistent HCV viremia after OLT
 - Liver transplants were performed ≥3 months, but ≤3 years prior to screening
 - Patients were required to have been receiving stable doses of immunosuppressive therapy for at least 1 month

On-treatment Predictors of Sais C Following Orthotopic Live

ukherjee,4 G. Barnard,5 D. Barnes,6 A. Koch,7 P. Hayashi

edical Center, Los Angeles, CA, USA; ³University of Cincinnati, Cincinnati, OH, US Iorth Carolina, Chapel Hill, NC, USA; ⁹University of Wisconsin, Madison, WI, USA; ¹³The Liver Institute at Methodist Dallas Medical Center, Dallas, TX, USA; ¹⁴Scher

- All patients had compensated liver disease with hemoglobin ≥11 g/dL; neutrophil count ≥1000/mm³; platelets ≥60,000/mm³; direct, indirect, and total bilirubin ≤3 times the upper limit of normal; albumin ≥3.0 mg/dL; creatinine clearance >50 mL/min; and alpha-fetoprotein ≤250 ng/mL
- Patients with evidence of decompensated liver disease; coinfection with hepatitis B virus and/or human immunodeficiency virus; body weight >135 kg; or any cause of liver disease other than chronic hepatitis C were excluded
- Patients were not required to show any degree of fibrosis


Study Design

- This was a phase 3, single-arm, multicenter, open-label study
- All patients received PEG-IFN alfa-2b (1.5 μg/kg/week) plus ribavirin (400-1200 mg/day) for 48 weeks (**Figure 1**)
- All patients received ribavirin 400 mg/day during weeks 1 and 2 and 800 mg/day during weeks 3 and 4
 - Thereafter, among patients who tolerated treatment, ribavirin was administered according to body weight
 - Immunosuppressive therapy was administered according to the protocols at each center
 - Growth factors were permitted at the discretion of the treating physician

• Primary end point was SVR, defined as undetectable HCV RNA 24 weeks

after completing treatment (lower limit of quantitation <25 IU/mL)
 Relapse was defined as detectable HCV RNA during 24-week follow-up in patients with undetectable HCV RNA at the end of treatment

Figure 1. PROTECT study design.

Treatment week 1–2: RBV 400 mg/day Treatment week 3–4: RBV 800 mg/day

Treatment week 5-48: RBV dose increased to max of

1200 mg/day (weight-based) if well tolerated

EVR = early virologic response; HCV = hepatitis C virus; PEG-IFN = peginterferon; RBV = ribavirin; RVR = rapid virologic response.

Results

Patients

- Most patients were white and male (Table 1)
- Tacrolimus and mycophenolate were the most frequently used immunosuppressive agents

ustained Virologic Response ir r Transplant: Subanalysis of t

^{,8} M. R. Lucey, L. Kulik, 10 A. D. Smith, 11 M. S. Olyaee, 12 I

A; ⁴University of Nebraska Medical Center, Omaha, NE, USA; ⁵University of Massact ¹⁰Northwestern University, Chicago, IL, USA; ¹¹Duke University, Durham, NC, USA; ing-Plough Research Institute, now Merck & Co., Inc., Whitehouse Station, NJ, USA

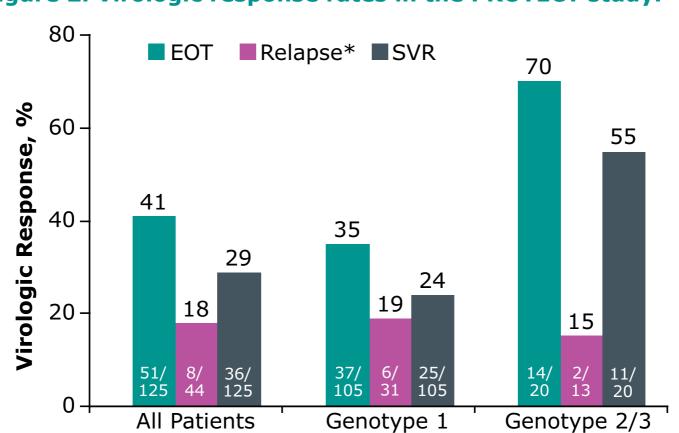

Table 1. Patient Characteristics

Table 1. Patient Characteristics				
	All Patients (N = 125)		Genotype 2/3 (n = 20)	
Male, n (%)	106 (85)	92 (88)	14 (70)	
Race, n (%)				
White	101 (81)	82 (78)	19 (95)	
Black	14 (11)	14 (13)	0	
Age, mean, y	54.2	54.5	52.2	
Weight, mean, kg	86.5	86.0	89.2	
Baseline viral load >600,000 IU/mL, n (%)	111 (89)	95 (90)	16 (80)	
Donor age, mean, y	40.4	39.4	45.2	
Donor deceased, n (%)	108 (86)	90 (86)	18 (90)	
Transplant-treatment interval, mean ± SD, days	477.6 ± 240	467.0 ± 235	533.7 ± 266	
Primary immunosuppressive therapy, n (%)				
Tacrolimus	104 (83)	87 (83)	17 (85)	
Cyclosporine	18 (14)	16 (15)	2 (10)	
Sirolimus	9 (7)	8 (8)	1 (5)	
Mycophenolate	70 (56)	60 (57)	10 (50)	
Prednisone	16 (13)	15 (14)	1 (5)	
Methylprednisolone	2 (2)	1 (1)	1 (5)	
Antithymocyte immunoglobulin	1 (1)	1 (1)	0	

Virologic Response

- In total, 29% of patients attained SVR (Figure 2)
 - 52 of 125 (41.6%) patients discontinued treatment early
 - Reasons for discontinuation were adverse events (n = 38), treatment failure (n = 7), did not wish to continue (n = 5), noncompliant (n = 2)

Figure 2. Virologic response rates in the PROTECT study.

^{*}Relapse rate calculation includes patients with undetectable HCV RNA at EOT who were not missing follow-up visit data.

EOT = end of treatment; SVR = sustained virologic response.

• Predictors of SVR:

- 80/80/80-adherent patients were more likely to attain SVR than patients unable to maintain adequate dosing (odds ratio [OR] 9.9, 95% confidence interval [CI] 4.1-23.9, P < .001) (**Table 2**)
- Early virologic response (EVR) was a significant predictor of SVR
 - Patients attaining complete EVR (undetectable HCV RNA at week 12) were more likely to attain SVR than those failing to attain EVR (OR 110.0, 95% CI 16.4-700.7, P < .001)
 - Patients attaining partial EVR (\geq 2-log₁₀ decline yet detectable HCV RNA at week 12) were also significantly more likely to attain SVR than those with no EVR (OR 31.1, 95% CI 4.8-195.3, P < .001)

in Patients Treated for the PROTECT Study

² P. Mantry, ¹³ E. Chaudhri, ¹⁴ L. D. Pedicone ¹⁴

achusetts, Worcester, MA, USA; 6Cleveland Clinic, Cleveland, OH, USA; SA; 12University of Kansas Medical Center, Kansas City, KS, USA;

ISA

Variables, % (n/N)	All Patients (N = 125)	Genotype 1 (n = 105)	Genotype 2/3
	(14 – 125)	(11 – 105)	(n = 20)
Patient	20.0 (26.4.25)	22.2 (25.4.25)	EE 0 (44 (20)
Genotype	28.8 (36/125)	23.8 (25/105)	55.0 (11/20)
Gender Male	33.0 (35/106)	27.2 (25/92)	71.4 (10/14)
Female	5.3 (1/19)	0 (0/13)	16.7 (1/6)
Race	<u>.</u>	• • •	F2 6 (40 (40)
White Non-White	29.7 (30/101) 25.0 (6/24)	24.4 (20/82) 21.7 (5/23)	52.6 (10/19) 100 (1/1)
Age, y	23.0 (0/24)	21.7 (3/23)	100 (1/1)
<50	42.3 (11/26)	31.6 (6/19)	71.4 (5/7)
≥50	25.3 (25/99)	22.1 (19/86)	46.2 (6/13)
Bodyweight, kg <75	19.2 (5/26)	22.7 (5/22)	0 (0/4)
≥75	31.3 (31/99)	24.1 (20/83)	68.8 (11/16)
Baseline viral load, IU/mL	46.2 (6/12)	44.4(4/0)	FO O (2/4)
≤600,000 >600,000	46.2 (6/13) 27.0 (30/111)	44.4 (4/9) 22.1 (21/95)	50.0 (2/4) 56.3 (9/16)
Baseline hemoglobin, g/dL	27.0 (30/111)	22.1 (21/33)	30.3 (3/10)
≤14	13.6 (9/66)	10.3 (6/58)	37.5 (3/8)
>14	45.8 (27/59)	40.4 (19/47)	66.7 (8/12)
Baseline serum glucose, mmol/L < 5.6	31.1 (19/61)	26.9 (14/52)	55.6 (5/9)
≥5.6	26.6 (17/64)	20.8 (11/53)	54.5 (6/11)
Donor			
Status Deceased	32.4 (35/108)	27.8 (25/90)	55.6 (10/18)
Living	11.1 (1/9)	0 (0/8)	100 (1/1)
Donor age, y			• •
≤50 >50	32.9 (26/79) 25.8 (8/31)	30.4 (21/69) 13.0 (3/23)	50.0 (5/10) 62.5 (5/8)
>50 On-treatment	23.0 (0/31)	13.0 (3/23)	02.3 (3/6)
RVR			
Yes	83.3 (5/6)	100 (3/3)	66.7 (2/3)
No EVR ^a	25.7 (29/113)	20.8 (20/96)	52.9 (9/17)
cEVR	66.7 (22/33)	60.0 (12/20)	76.9 (10/13)
pEVR	36.1 (13/36)	37.5 (12/32)	25.0 (1/4)
No EVR	1.8 (1/56)	1.9 (1/53)	0 (0/3)
Nadir hemoglobin, g/dL <10	26.4 (23/87)	23.0 (17/74)	46.2 (6/13)
≥10	34.2 (13/38)	25.8 (8/31)	71.4 (5/7)
Cyclosporine use ^b	20 4 (5/17)	22.2 (5/15)	0 (0/2)
Yes No	29.4 (5/17) 28.7 (31/108)	33.3 (5/15) 22.2 (20/90)	0 (0/2) 61.1 (11/18)
Tacrolimus use ^b	•	22.2 (20/ 30)	<u> </u>
Yes	30.4 (31/102)	23.5 (20/85)	64.7 (11/17)
No 80:80:80 compliant ^a	21.7 (5/23)	25.0 (5/20)	0 (0/3)
Yes	61.5 (24/39)	57.1 (16/28)	72.7 (8/11)
No	14.0 (12/86)	11.7 (9/77)	33.3 (3/9)

^aHighlighting denotes variables that were significantly associated with SVR (cEVR, pEVR, vs no EVR; 80:80:80 vs no 80:80:80; P < .001 for all comparisons). All other variables failed to show a significant association with SVR (P > .05). Analysis was performed only for the "all-patient" population.

bUse of immunosuppressive agent during screening and/or treatment.

cEVR = complete early virologic response; EVR = early virologic response; pEVR = partial early virologic response; RVR = rapid virologic response.

Conclusions

- Dosing of at least 80/80/80 and partial and complete EVR are significant positive predictors of SVR in patients receiving PEG-IFN alfa-2b plus ribavirin for recurrent hepatitis C post-OLT
- Discontinuation of treatment may be considered in patients who fail to attain EVR

Acknowledgments

Study investigators: Graham Barnard, David Barnes, Kim Brown, Robert Brown, Jeffrey Crippin, Reem Ghalib, Fred Gordon, Paul Hayashi, Alvaro Koch, Laura Kulik, Paul Kwo, Michael Lucey, Parvez Mantry, Sandeep Mukherjee, Guy Neff, Mojtaba Olyaee, Fred Poordad, Nikolaos Pyrsopolous, Thomas Schiano, Alastair Smith, Lewis Teperman, Hugo Vargas.

References

- 1. Ballardini G, et al. *Liver Transpl.* 2002;8(1):10-20.
- Guerrero RB, et al. *Mod Pathol*. 2000;13(3):229-37.
 Berenguer M. *Liver Transpl*. 2002;8(10):S14-8.
- 4. Gordon FD, et al. Presented at the 45th Annual Meeting of the European Association for the Study of the Liver; April 14–18, 2010; Vienna, Austria.

Disclosures F. Poordad has been an advisor/consultant and has received research grants from Abbott, Genentech, Gilead, Idenix, Merck, Salix, and Vertex and has also received research grants from Bristol-Myers Squibb and Pharmassett plus speaker honoraria from Genentech, Gilead, and Salix. G. Neff has served on speaker bureaus for Bayer, Bristol-Myers Squibb, Genentech, Salix, and 3-Rivers and as consultant to Genentech and Salix. S. Mukherjee is on the speaker bureau for

Merck. D. Barnes is an investigator for Centocor, Eisai, Hyperion Therapeutics, Hoffman-LaRoche, Ikaria, and Merck. M. R. Lucey receives grant support from Bristol-Myers Squibb, Hyperion, Salix, and Vertex. F. D. Gordon, G. Barnard, A. Koch, P. Hayashi, L. Kulik, A. D. Smith, and M. S. Olyaee have nothing to disclose. E. Chaudhri and L. D. Pedicone are employees of, and hold stock in Schering-Plough, now Merck and Co.